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After more than a quarter century’s intense research and exploration for their distinctive physical properties and
potential applications, carbon nanotubes remain an active research field with many surprises and opportunities.
Recent advances in nano-optics provide a powerful tool to optically characterize carbon nanotubes with a
defined chiral index at the single-nanotube level. Here we review our recent effort along this direction, including
(1) combining transmission electron microscopy and single-nanotube optical spectroscopy to establish an atlas for
carbon nanotube optical transitions and (2) developing a high-contrast polarization microscope for real-time
optical imaging and in situ spectroscopy of individual nanotubes in devices. We will also discuss the importance
of such characterizations for controlled nanotube growth and for understanding chirality-dependent device
behaviors. © 2016 Optical Society of America
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1. INTRODUCTION

Since their discovery in 1991 [1], carbon nanotubes have re-
vealed remarkable mechanical [2–6], thermal [7–9], electrical
[10–14], and optical properties [15–22] and have been envi-
sioned as the material of choice for numerous applications.
With diameters on the order of 1 nm and lengths reaching cen-
timeters, carbon nanotubes also constitute a model system for
one-dimensional physics, a subject of long-standing experimen-
tal and theoretical interest [23–32].

A single-walled carbon nanotube can be viewed as rolled-up
graphene sheet, and its structure is uniquely defined by the
wrapping vector. The projection of the wrapping vector onto
the graphene basis yields a two-coordinate number �n; m�, known
as the chiral index of the nanotube [33,34]. Even with diameters
smaller than 3 nm, there are hundreds of different nanotube
species with different chiral indices. The electrical and optical
properties of a nanotube depend sensitively on the precise tube
structure, which can vary from semiconducting to metallic with
the slightest change of chiral index [35,36]. This richness and di-
versity of carbon nanotubes make them appealing for a variety
of very different applications [37–41]. To realize the potential
of carbon nanotubes, we have to examine in detail the distinct
physical behaviors of different nanotube species.

Single-nanotube spectroscopy provides a powerful tool
for such studies [42–52]. Optical spectroscopy, with its non-
invasive and noncontact nature, high spectral resolution, and
superb sensitivity, has figured prominently in nanostructure re-
search. Many optical techniques are sensitive enough to allow
probing of individual carbon nanotubes, and single-nanotube
spectroscopy has several distinct advantages. For a given indi-
vidual nanotube, it has a well-defined chiral index, well-defined
environment, and well-defined spatial location. Consequently,
single-nanotube spectroscopy can yield a simplified spectrum
with specific information, is capable of probing environmental
effects, and can be readily combined with other characterization
techniques.

This review mainly contains three parts. Part 1 introduces
the nanotube’s geometrical structure, tight-binding energy
band structures, and many-body interactions, providing the
background for discussing the optical transitions on carbon
nanotubes. Part 2 presents the recent developments in estab-
lishing the atlas for carbon nanotube optical transitions and
characterizing nanotubes in devices using single-nanotube spec-
troscopy. Part 3 discusses the applications of single-nanotube
optical spectroscopy in chiral index feedback for nanotube
growth and in situ study of nanotube device physics.
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A. Background Knowledge about Carbon Nanotube
Optical Transitions

The physical structure of single-walled carbon nanotubes can
be regarded as rolled-up graphene and is uniquely defined by
the circumferential chiral vector Ch as

Ch � na1 � ma2 � �n; m�; (1)

where a1 and a2 are the two basic vectors of a graphene unit
cell [Fig. 1(a)]. The term �n; m� describes the chiral index or
chirality of a nanotube [33,34]. The equivalent two parameters
used to conveniently characterize nanotube structures are
(d, θ), i.e., diameter and chiral angle [relative angle between
Ch and a1; see Fig. 1(a)]. The diameter and chiral angle are
related to �n; m� as in the relation

d � Ch

π
�
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3
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Here, acc is nearest-neighbor C–C distance.
The electronic band structures of carbon nanotubes can be

analytically obtained from the tight-binding graphene band
structures by the zone folding method [33,34]. Due to the
finite circumference length, the momentum at the reciprocal
space along the Ch direction is quantized into distinct states
separated by Δk � 2π

Ch
� 2

d Effectively, we can use a different
“cutting line” to intersect with a two-dimensional graphene
band structure and get a one-dimensional nanotube band struc-
ture. For mod �n − m; 3� � 1, 2 nanotubes, the smallest dis-
tance between the cutting line and the K point is 2

3d and
they are semiconducting [Fig. 2(a)]; for mod �n − m; 3� � 0
nanotubes, one cutting line will go through the K point of the
graphene Brillouin zone, and they are metallic [Fig. 2(b)]. Each
cutting line will give one conduction band and one valence
band, and at the minimum and maximum of these two bands,
there exist van Hove singularities. The energy bandgap between
the two singularities from the same cutting forms the sub-
bandgap. Transitions at these bandgaps lead to strong optical
resonances, and these transitions are called optical transitions,
which are traditionally labeled Sii for semiconducting and Mii

for metallic nanotubes [Figs. 2(c) and 2(d)], where i is the sub-
band index. Mathematical calculations giving the distance from
each cutting line to the K point can be simply described as
p × 2∕�3d�, where p is an integer and has a value of 1, 2, 3,

4, 5, 6, 7, 8, 9, 10 … for both semiconducting and metallic
optical transitions in the order of S11; S22;M11; S33; S44;M22;
S55; S66;M33; S77;… . Since the direction and distance to the
K point from these cutting lines are solely determined by
�n; m�, the optical transitions have a one-to-one correspon-
dence to the chiral index. This correspondence forms the foun-
dation for using an optical spectrum to determine the chiral
index of carbon nanotubes, or to predict optical transitions
of any given �n; m� nanotubes, if we can establish an accurate
relationship between Eii and �n; m�.

The optical transitions discussed above of carbon nanotube
from the tight-binding method are based on a one-particle
picture, where the many-body Coulomb interactions are
ignored [53]. However, both experimental results and ab inito
calculations based on GW approximation (expansion of the
self-energy in terms of the Green function G and Coulomb
interaction W ) show that many-body effects could be promi-
nent in the optical transition of carbon nanotubes [54–57].
In particular, the experimental peak positions can vary by
hundreds of meV from the simple tight-binding predictions.
Therefore, it is crucial to establish the one-to-one correspon-
dence between the nanotube optical transitions and chiral
structure experimentally.

2. RESULTS

A. Atlas for Carbon Nanotube Optical Transition
Energy

As indicated above, the optical transitions of a carbon
nanotube are directly related to its chiral index �n; m�. In real

Fig. 1. Geometric structure of a carbon nanotube. (a) a1 and a2 are
the two base vectors of the graphene lattice. Ch (T ) is the circumfer-
ential (translational) chiral vector of a carbon nanotube. θ is the chiral
angle. (b) Carbon nanotubes of different chiral indices.

(a) (b)

(c) (d)

Fig. 2. Optical transitions in carbon nanotubes. (a), (b) Zone-fold-
ing pictures of (a) semiconducting and (b) metallic nanotubes. The
contour curves are constant energy lines in the graphene Brillouin
zone. The solid parallel lines describe available states consistent with
the nanotube circumferential boundary condition. (c), (d) Illustration
of (c) semiconducting and (d) metallic carbon nanotube optical tran-
sitions in E-k space.
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experimental nanotubes, n or m can reach up to 35, and hence
there exist more than 400 nanotube species. The nanotube com-
munity has long sought to establish a structure–property relation
map for optical transitions in all these nanotube species.

We use Rayleigh scattering spectroscopy [19], which employs
high-brightness supercontinuumwhite light on suspended nano-
tubes, to determine the optical resonances for individual nano-
tubes with an uncertainty of less than 20 meV. A significant
source of this uncertainty is the difficult-to-control environmen-
tal effects, where unintentional mechanical strain, charge doping,
and gas adsorption can shift the transition energy by ∼10 meV.
Complementarily, we use electron diffraction techniques in
transmission electron microscopy (TEM) to determine the chiral
index of the same nanotubes [58–60]. In this way the optical
transitions and chiral index can be directly linked with each other
[Figs. 3(a)–3(c)]. Previously only limited optical transitions in
several nanotube species were studied in this combined way
[46]. Recently, we studied more than 500 optical transitions
from more than 200 nanotubes and established a complex and
complete optical transitions–chiral index atlas [49].

With this experimental atlas, an experimental Katuara plot
is then obtained [Fig. 3(d)], in which all dots are determined
unambiguously by experiment data. Since this plot is based
on experimental data, the accuracy reaches as high as 20 meV,
compared to more than 100 meV for many nanotubes in pre-
vious plot [61]. This accurate Katuara plot forms the founda-
tion for the future carbon nanotube studies and applications
in nanoscale electronics, optoelectronics, and many-body inter-
actions that utilize nanotubes of a specific chiral index. One
note about this plot is that when we apply it on nanotubes

on substrates, the transition energies will be redshifted by about
40 meV due to the dielectric screening effects.

B. Quantitative Determination of Carbon Nanotube
Absorption Cross Sections

Although Raleigh scattering spectroscopy can efficiently
determine the peak position of nanotube optical transitions,
it does not yield the optical absolute absorption directly.
Conventionally, optical absorption is widely used to character-
ize the linear optical properties of a material quantitatively.
However, it is a great experimental challenge to measure the
absorption in individual nanotubes, because the nanotube
diameter is orders of magnitude smaller than the spot size of
a focused laser beam [62,63].

Recently, a dramatic increase in the optical transmission
contrast of individual carbon nanotubes has been successfully
achieved by using a polarization-based homodyne technique, in
which two polarizers were placed, respectively, at incoming and
outgoing light paths with a relative angle of close to 90° with (δ
eviation), and the nanotubes were put with their axis at 45° to
the incoming polarizer [Fig. 5(a)] [50,64]. Under this geom-
etry, the signal is enhanced by about 100 times, and thus be-
comes detectable by modern optical spectroscopic techniques.
Using this method, quantitative determination of absorption
cross sections was performed for more than 50 individual
chirality-defined single-walled nanotubes (illustrated in
Fig. 4). An empirical formula was established to describe the
absorption cross section spectrum for any given nanotube
[50]. The quantitative information of absorption cross sections
in a broad spectral range and all nanotube species not only
provides new insight into the unique photophysics in one-
dimensional carbon nanotubes but also enables absolute deter-
mination of optical quantum efficiencies in important photo-
luminescence and photovoltaic processes.

C. Optical Spectroscopy of Individual Nanotubes in a
Device

The atlas described above for nanotube optical transition
energy and absorption cross sections is established based on
single-nanotube optical spectroscopy on suspended nanotubes.

(a) (b) (c)

(d)

Fig. 3. Determination of carbon nanotube optical transition energy.
(a) Schematic for combined TEM electron diffraction and Rayleigh
scattering measurements on the same suspended nanotubes; (b),
(c) electron diffraction pattern and Raleigh scattering spectrum of the
same suspended nanotube, respectively; (d) Katuara plot established
experimentally by the combined TEM and Raleigh scattering tech-
nique.

(a)

(b) (c) (d)

Fig. 4. Single-nanotube absorption cross section measurement with
a defined chiral index. (a) Scheme of polarization-optimized homo-
dyne detection for single-nanotube absorption, (b) electron diffraction
patterns, (c) homodyne modulation signal (ΔI∕I) at various values of
δ, and (d) absolute absorption cross section per carbon atom with par-
allel light polarization to nanotube axis.
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For further study and real application in device physics and
controlled growth, we need direct optical imaging and spectros-
copy of nanotubes on substrates. Technically the background
signal of nanotubes on growth substrates or in devices is more
difficult to manipulate and control than that in suspended
ones.

Recently we developed a polarization reflectance microscopy
technique to address this problem [Fig. 5(a)] [52]. In our tech-
nique, we optimize the optical elements and the illumination/
detection scheme with a supercontinuum light source to
achieve an extinction ratio as high as 105 at a diffraction-limited
spatial resolution. Horizontally polarized incident light
(after polarizer 1) lluminates a nanotube oriented at 45°.
The nanotube-scattered electrical field is polarized along the
nanotube direction due to a strong depolarization effect
on light polarized perpendicular to the nanotube, while the
substrate reflection retains the horizontal polarization.
Polarizer 2 is oriented close to the vertical direction (with δ
eviation), which strongly reduces the substrate-reflected
field by sin δ but largely keeps the nanotube-scattered field.
The nanotube contrast is therefore greatly enhanced. This
technique enables high-throughput optical imaging [Fig. 5(c)]
and in situ spectroscopy [Fig. 5(d)] on the substrate and in
the device.

3. DISCUSSION

A. Chiral Index Feedback for Nanotube Growth

It is the holy grail in the nanotube field to achieve controlled
growth of carbon nanotubes with a defined chiral index.
Accurate and prompt feedback of the chirality distribution
of as-grown nanotubes is crucial to realize this goal. The atlas

for carbon nanotube optical transitions, together with the direct
optical imaging and in situ spectroscopy of carbon nanotubes
on substrates, provides the platform for this chiral index feed-
back. By this method, the detailed chirality distribution of
hundreds of nanotubes on as-grown substrates (transparent
or opaque) can be determined accurately [Fig. 6(a)]. The chi-
rality [Fig. 6(b)], diameter [Fig. 6(c)], and chiral angle distri-
bution [Fig. 6(d)] all show that different kinds of nanotubes are
enriched in different regions [52]. This quick feedback is criti-
cal to accelerating the controllable growth of carbon nanotubes.
Recent study using this technique further shows that by con-
trolling the carbon sources, the richness ratio between metallic
and semiconducting nanotubes can be controlled in a certain
range [65,66].

B. In situ Study of Nanotube Device Physics

Future nanotube device applications surely rely on the full
understanding of their device physics under operating condi-
tions. In situ imaging and spectroscopy of individual nanotubes
in devices offer new opportunities to probe nanotube physics in
operating devices. As an example, gate-variable nanotube opti-
cal transitions in field-effect devices were measured to investi-
gate electron–electron interaction effects on excited states in
nanotubes [52]. Optical spectra for a (27, 18) metallic nano-
tube show significant broadening, with the gate voltage varying
from close to 20 V to −20 V [Fig. 7(a)]. This broadening in-
dicates a new type of electron–electron interaction. Figures 7(b)
and 7(c) show the representative scattering channels that satisfy
the stringent conservation requirements of energy, momentum,
and angular momentum by the quantum number E, k, and μ
respectively. Such scattering between optically excited electrons
and free holes (in another valley) is absent in pristine undoped
carbon nanotubes [Fig. 7(b)], but emerges with hole doping
[Fig. 7(c)].

(a)

(b) (c) (d)

Fig. 5. Single-nanotube optical imaging and spectroscopy in the
device. (a) Scheme for the combination of supercontinuum laser
illumination and polarization-based high-contrast polarization micros-
copy for high-throughput individual nanotube imaging and chirality
identification, (b) scanning electron microscopy images and (c) optical
imaging and (d) in situ spectroscopy for a (16, 11) single-wall and a
multi-walled nanotube (MWNT). BS: beam splitter.

(a) (b)

(c) (d)

Fig. 6. High-throughput chirality profiling of 402 single-walled car-
bon nanotubes from one growth condition. (a) The scanning electron
microscopic image of nanotube sample grown on quartz and (b)–
(d) chiral index, diameter, and chiral angle distribution, respectively,
of semiconducting and metallic nanotubes, showing inhomogeneous
enrichment.
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4. SUMMARY

In this review we have discussed optical spectroscopy and
imaging of individual carbon nanotubes, based on which an
atlas of carbon nanotube optical transition energy and absorp-
tion cross section with a defined index was built up and the
in situ study of carbon nanotubes in devices and on substrates
has been realized. These techniques can enable new directions
in nanotube research, for example, for realizing in situ optical
monitoring of nanotube growth for chirality control and
exploring chirality-dependent nonlinear optical response in
carbon nanotubes. We believe such development will lead to
further understanding of nanotube physics and contribute to
its application in nanotechnology.

Funding. National Science Foundation (NSF) (DMR-
1404865); National Natural Science Foundation of China
(NSFC) (51522201, 11474006, 91433102).
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